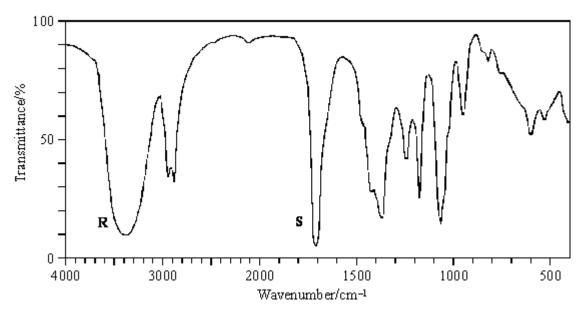
Q1. F			cts with hydrogen bromide to form a mixture of saturated organic products. The .r. spectrum of the major organic product has	
	A	3 pea	aks with relative intensities 3 : 2 : 2	
	В	2 pea	aks with relative intensities 3 : 4	
	С	3 pea	aks with relative intensities 3 : 1 : 3	
	D	2 pea	aks with relative intensities 6 : 1 (Total 1 ma	ırk)
Q2.	allov	ved to	gen and carbon monoxide were mixed in a 2:1 mole ratio. The mixture was reach equilibrium according to the following equation at a fixed temperature pressure of 1.75×10^4 kPa. $2H_2(g) + CO(g) \rightleftharpoons CH_3OH(g)$	
	(a)	The meth	equilibrium mixture contained 0.430 mol of carbon monoxide and 0.0850 mol of	
		(i)	Calculate the number of moles of hydrogen present in the equilibrium mixture.	
		(ii)	Hence calculate the mole fraction of hydrogen in the equilibrium mixture.	
		(iii)	Calculate the partial pressure of hydrogen in the equilibrium mixture.	

(5)


(D)	carb	carbon monoxide was 7550 kPa, the partial pressure of hydrogen was 12300 kPa and the partial pressure of methanol was 2710 kPa.					
	(i)	Write an expression for the equilibrium constant, \mathcal{K}_{p} , for this reaction.					
	(ii)	Calculate the value of the equilibrium constant, $K_{\!\scriptscriptstyle p}$, for the reaction under these conditions and state its units.					
		Κ,					
		Units					
(c) Two isomeric esters E and F formed from methanol have the molecular for $C_6H_{_{12}}O_2$							
	Ison	ner E has only 2 singlet peaks in its proton n.m.r. spectrum.					
	Ison	ner F is optically active.					
	w the structures of these two isomers.						
	ner E						
	Ison	ner F					

(3)

Q3. Spectral data for use in this question are provided below the Periodic Table (first item on the database).

Compound Q has the molecular formula C₄H₈O₂

(a) The infra-red spectrum of **Q** is shown below.

Identify the type of bond causing the absorption labelled ${\bf R}$ and that causing the absorption labelled ${\bf S}$.

R	
_	
•	

(b) Q does not react with Tollens' reagent or Fehling's solution. Identify a functional group which would react with these reagents and therefore cannot be present in Q.

(1)

(2)

(c) Proton n.m.r. spectra are recorded using a solution of a substance tetramethylsilane (TMS) has been added.						tance to which			
	(i)								
	(1)	Give two reasons why TMS is a suitable standard. Reason 1							
			son 2						
		Rea	8011 2		•••••				
	(ii)	Give an example of a solvent which is suitable for use in recording an n.m.r. spectrum. Give a reason for your choice.							
		Solvent							
		Rea	son						
(d)	The	proto	n n.m.r. spec	trum of Q sh	ows 4 peaks.				
	The table below gives δ values for each of these peaks together with their splitting patterns and integration values.								
δ/ppm			2.20	2.69	3.40	3.84]		
Splitting pattern			singlet	triplet	singlet	triplet			
Integrati	ion va	lue	3	2	1	2]		
What can be deduced about the structure of $\bf Q$ from the presence of the following in its n.m.r. spectrum? (i) The singlet peak at δ = 2.20						ence of the following in			
	(ii) The singlet peak at δ = 3.40								

(4)

		(iii)	Two triplet peaks	
				(2)
				(3)
(e))	Using	your answers to parts (a), (b) and (d), deduce the structure of compound	Q.
				(1)
			(Total	11 marks)
Q4. How (C	ma ;H₃)₂	ny pea CHCC	aks will be observed in the low-resolution proton n.m.r. spectrum of OO(CH ₂) ₃ CH ₃ ?	
Α		4		
В		5		
С		6		
D		7	(Tot	tal 1 mark)
				.a. i iiiai Nj